1. అవసరానికి తగ్గ పనిముట్లు
విశ్వరహస్యాలని ఛేదించటానికి మానవుడు అనేకమైన పనిముట్లని వాడేడు. వీటన్నిటిలోకి ముందుగా వాడుకలోకి వచ్చినది నిట్రాట.
ఈ నిట్రాటనే ఇంగ్లీషులో నోమాన్ (gnomon) అంటారు. ఈ నోమాన్ అన్న ఇంగ్లీషు మాట, జ్ఞానం అన్న సంస్కృతం మాట సహజాత పదాలు. కనుక నోమాన్ అన్న మాటని జ్ఞానదండం అని మనం తెలుగులో పేరు పెట్టి వాడుకోవచ్చు. కాని నిట్రాట అంటే ప్రత్యేకంగా విపులీకరణ అక్కర లేకుండా అర్థం అవుతుంది. ఈ నిట్రాట ప్రసరించే నీడని బట్టి మన పూర్వులు ఎన్నో విషయాలు తెలుసుకున్నారు.
నిట్రాట తరువాత చెప్పుకోదగ్గది సూర్యఫలకం లేదా సూర్యయంత్రం లేదా నీడ గడియారం. దీనిని ఇంగ్లీషులో సన్డయల్ (sundial) అంటారు. ఈ సూర్యఫలకం కాలజ్ఞానాన్ని ఇస్తుంది; అంటే వేళ ఎంతయిందో చెబుతుంది. ఇప్పుడు కాలాన్ని కొలవటానికి చాల సున్నితమైన గడియారాలు ఉన్నాయి. కాలాన్ని అతి నిక్కచ్చిగా కొలిచే శ్రేష్టమైన గడియారాన్ని ఇంగ్లీషులో క్రోనోమీటర్ (chronometer) అంటారు. దీనిని తెలుగులో కాలమాపకం అనొచ్చు.
ఆ తరువాత చెప్పుకోదగ్గ పనిముట్టు దుర్భిణి. దుర్భిణి, దూరదర్శని అనే రెండు మాటలు టెలిస్కోప్ (Telescope) అన్న ఇంగ్లీషు మాటకి పర్యాయ పదాలు. భారత ప్రభుత్వం, దూరదర్శని అన్న పేరుని వారి టెలివిజన్ ప్రసార సంస్థకి పెట్టక పూర్వం దూరదర్శని అంటే టెలిస్కోప్ అనే అర్థం అయేది. ఇది దూరంగా ఉన్న వస్తువులని చూడటానికి ఉపయోగపడుతుంది. తరువాత చెప్పుకోదగ్గ పనిముట్టు వర్ణమాలాదర్శని. దీనినే ఇంగ్లీషులో స్పెక్ట్రోస్కోప్ (spectroscope) అంటారు. కాంతి యొక్క రహస్యాలు బట్టబయలు చెయ్యటానికి ఇది ఎంతగానో ఉపయోగపడుతుంది. ఆ తరువాత చెప్పుకోదగ్గ పరికరం కలనయంత్రం లేదా కంప్యూటర్. ఈ కలనయంత్రాలు లేకుండా ఈ రోజుల్లో ఏ పనీ జరగటం లేదు. అంతే కాకుండా ప్రస్తుతం కంప్యూటర్ అంటే తెలియని వాళ్ళు అరుదు కనుక దాని గురించి చెబుతూ కాలయాపన చెయ్యటం అనవసరం.
ఆఖరుగా చెప్పుకోదగ్గవి: రేణుత్వరణి (particle accelerator), నభోనౌక (spacecraft). దూరదర్శని నేలమట్టం మీద కంటె అంతరిక్షంలో ఉంటే బాగా ఉపయోగపడుతుంది కనుక దూరదర్శనిని అంతరిక్షంలోకి లేవనెత్తటానికి నభోనౌకలు కావాలి. దూరదర్శని సేకరించిన కాంతిని విశ్లేషించి అర్థం చేసుకోటానికి వర్ణమాలాదర్శని కావలసి ఉంటుంది. అణుగర్భంలో ఉన్న రహశ్యాలని విశ్వజననంతో సమన్వయపరచటానికి రేణుత్వరణి కావాలి.
దూరదర్శని (దుర్భిణి) ఎప్పుడు ఎలా పుట్టిందో, ఎలా పరిణతి చెందిందో అన్న విషయాన్ని మాత్రం ఇప్పుడు, ఇక్కడ, ఈ వ్యాసంలో ప్రస్తావించబోతున్నాను.
2. నేలమీద దుర్భిణులు
చీకటి రాత్రి దుర్భిణిని ఆకాశం వైపు సారించి చూస్తే రెండు విధాలైన అనుభోగాలు కలుగుతాయి. కంటికి కనిపించే దృశ్యానికి నోట మాట రాక ఆశ్చర్యచకితులం కావటం – మొదటి అనుభోగం. శనిగ్రహం చుట్టూ కనిపించే వలయం! నల్లటి ముఖ్మల్ గుడ్డ మీద జల్లిన వజ్రాలలా మెరిసిపోతూ కనిపించే నక్షత్రాలు! ప్రకాశిస్తూన్న తెల్లటి మేఘాలలా కాంతులీనే క్షీరసాగరాలు! ఈ భూలోకం మీద మానవుడు అవతరించకముందే – దరిదాపు రెండు మిలియను సంవత్సరాల క్రితం – ఈ క్షీరసాగరాలలో బయలుదేరిన కాంతికిరణాలు ఇప్పుడు మన కంటి లోని అక్షిపటలాన్ని చేరాయనే స్పృహ మనకి కలిగేసరికి ఒళ్ళు జలదరించక మానదు. ఇంతకంటె శక్తిమంతమైన దుర్భిణిలో చూస్తే ఇంకేమి కనబడుతుందో అనేది రెండవ అనుభోగం.
నాలుగు వందల ఏళ్ళ క్రితం గెలిలియో (Galileo Galilee) తన చేతిలో ఉన్న చిన్న దుర్భిణిని ఆకాశం వైపు ఎత్తి చూసినప్పుడు ఈ రెండు రకాల అనుభోగాలని పొందే ఉంటాడు. నగ్ననయనాలకి కనబడని తారలు ఎన్నో ఆయనకి ఆ దుర్భిణిలో కనబడ్డాయి. ఒకే ఒక రాశిలో – మృగవ్యాధుడి రాశిలో (Andromeda constellation) – కనబడుతూన్న నక్షత్రాలని లెక్కపెట్టటానికి ప్రయత్నించి, అలసిపోయి, విరమించుకున్నాడు. అన్ని నక్షత్రాలు కనిపించేయిట, గెలిలియోకి! చంద్రుడి మీద కొండలని చూశాడు. గురుగ్రహం చుట్టూ తిరుగుతున్న నాలుగు ఉపగ్రహాలని చూసేడు. చూసి, సంతృప్తి పడి ఊరుకోకుండా అంతకంటే శక్తిమంతమైన (పెద్ద) దుర్భిణిని నిర్మించటానికి సమకట్టేడు. పెద్దవి, నాణ్యమైనవి అయిన దుర్భిణిలు నిర్మించాలంటే ఎక్కువ కాంతిని పోగుచెయ్యగల పెద్ద పెద్ద కటకాలు (లెన్సెస్, lenses) కావలసి ఉంటుంది. అటువంటి కటకాలు తయారు చేసే పద్ధతి ఆ రోజులలో వారికి తెలియదు. ప్రత్యామ్నాయంగా పొడుగాటి దుర్భిణులు చెయ్యటం మొదలుపెట్టేడాయన.
ఇక్కడ కొద్దిగా శాస్త్రం చెబుతాను. కటకాలగుండా కాంతి ప్రసరించినప్పుడు ఆ కాంతి కిరణాలు వక్రీభవనం (refraction) చెందుతాయి; అంటే ఒంగుతాయి. కర్రని వంచినప్పుడు అందులోని ఈనెలు విడిపోయినట్లు కాంతి వంగినప్పుడు ఆ కాంతిలో ఉన్న రంగులన్నీ విడిపోయి ప్రతి రంగు కిరణం తన దారి తను చూసుకుంటుంది. ఈ ప్రక్రియ కారణంగా ప్రతిబింబంలో వాడితనం పోయి చెదిరిపోయినట్లు కనిపించటమే కాకుండా వస్తువులో లేని రంగులు ప్రతిబింబంలో కనబడతాయి. దీనితో దుర్భిణి నాణ్యత పాడవుతుంది. ఈ సమస్యని పరిష్కరించటానికి ఒక మార్గం దుర్భిణి పొడుగు పెంచటం కనుక మొదటి రోజులలో నిర్మించిన దుర్భిణుల పొడుగు ఆంజనేయుడి తోకలా అలా పెరుగుతూ వచ్చేయి.
యొహానెస్ హవీలియస్ (Johannes Hevelius) అనే ఆసామీ 150 అడుగుల పొడుగున్న దుర్భిణిని నిర్మించి, దానిని రాటలు, తాళ్ళు ఉపయోగించి ఏటవాలుగా అమర్చేడు. చిరుగాలి వీచేసరికే ఊగిసలాడిపోయేదిట; ఇంక దానితో నక్షత్రాలని ఎక్కడ చూస్తాం? నెదర్లండ్ దేశంలో హయ్గన్స్ (Christiaan Huygens) అనే ఆసామీ, మరీ పొడుగాటి గొట్టాన్ని నిర్మించటంలో ఉన్న కష్టాలని గుర్తించి, గొట్టం లేకుండానే దుర్భిణిని నిర్మించేడు: ఇతగాడు వస్తుగత కటకాన్ని (objective lens) ఎత్తయిన వేదిక మీద ఒక చట్రంలో అమర్చి, దానికి 200 అడుగుల దూరంలో కంటి కటకాన్ని (eyepiece) మరొక చట్రంలో పెట్టి గొట్టం లేని దుర్భిణిని నిర్మించేడు. ఇటువంటి ప్రయత్నాల వల్ల ప్రయాస ఎక్కువ, ప్రయోజనం తక్కువ అని తేలిపోయింది.
కటకాలతో నిర్మించిన వక్రీభవన దుర్భిణులలో (refracting telescopes) ఉన్న మౌలికమైన ఇబ్బందులని మొదటగా అర్థం చేసుకున్నవాడు న్యూటన్ (Isaac Newton). కటకాలకి బదులు దర్పణాలు (mirrors) వాడి ఆయన పరావర్తన దుర్భిణులు (reflecting telescopes) అనే కొత్త జాతి దుర్భిణుల నిర్మాణానికి శ్రీకారం చుట్టేడు. కటకాలకి బదులు దర్పణాలు వాడటం వల్ల ఇంకా లాభాలు ఉన్నాయి. కటకాలని రెండు పక్కలా నున్నగా సానపట్టాలి. దర్పణాలని ఒక పక్క సాన పడితే చాలు. వెనక దన్ను పెట్టి ఎంత పెద్ద దర్పణం కావాలంటే అంత పెద్ద దర్పణం తయారు చేసుకోవచ్చు; ఈ పని కటకాలతో సాధ్యం కాదు. కటకం రెండు పక్కలా వాడతాము కనుక ఆ కటకం అంచు చుట్టూ చట్రం కట్టి (కళ్ళజోడు చట్రంలా) నిలబెట్టాలి. కటకం పెద్దయిన కొద్దీ, దాని బరువు ఎక్కువ అయిపోయి, మొత్తం పని అంతా కష్టం అయిపోతుంది. ఇవన్నీ అర్థం చేసుకున్న హర్షల్ (William Herschel) ఎన్నో కష్టాలు పడి, తన సొంత చేతులతో చేసుకున్న పరావర్తన దుర్భిణి ఉపయోగించగానే, ఆయన పడ్డ కష్టాలకి వెంటనే ఫలితం దక్కింది. శని గ్రహానికి అవతల, నగ్ననయనాలకి కనబడనంత దూరంలో, సూర్యుడి చుట్టూ తిరుగుతూన్న సరికొత్త గ్రహం ఒకటి ఆయన దుర్భిణిలో కనిపించింది. ఒక్క పెట్టున సూర్య కుటుంబం పరిధి పెరిగింది. ఆ కొత్త గ్రహం పేరే యూరెనస్ (Uranus). ఇదే పద్ధతి ఉపయోగించి ఐర్లండులో లార్డ్ రాసీ (William Parsons, the third Earl of Rosse) ఆరు అడుగుల వ్యాసం ఉన్న దర్పణం ఉపయోగించి నిర్మించిన పెద్ద దుర్భిణిలో చూసేసరికి మొదటిసారిగా ఆయన సర్పిలాకారంలో ఉన్న ఒక క్షీరసాగరాన్ని చూడగలిగేడు. మన పాలపుంత (మిల్కీవే గేలక్సీ, Milky Way galaxy) క్షీరసాగరం కూడ ఇదే విధమైన సర్పిలాకారంలోనే ఉంటుంది కాని మనం దాని మధ్యలో ఉన్నాము కనుక దాని ఆకారం చూడలేము, దానికి ఛాయాచిత్రాలు తియ్యలేము.
1. పాలొమార్ కొండ మీద ఉన్న హేల్ టెలిస్కోప్.
నాటి నుండి నేటి వరకు దుర్భిణి నిర్మాణ శిల్పంలో ఎంతో ప్రగతి సాధించేం. ఈ రోజుల్లో పెద్ద పెద్ద దుర్భిణులలో కాంతిని కూడగట్టే దర్పణాల వ్యాసం 10 మీటర్లు (33 అడుగులు) ఉంటోంది. దక్షిణ కేలిఫోర్నియాలో, పాలొమార్ కొండ మీద ఉన్న, చరిత్ర ప్రసిద్ధి చెందిన హేల్ టెలిస్కోప్ (Hale telescope) దర్పణం వ్యాసం 5.1 మీటర్లు (200 అంగుళాలు). దర్పణం వ్యాసం రెట్టిపు అవటంతో నేటి దుర్భిణులు హేల్ కంటె నాలుగింతల కాంతిని సేకరించగలుగుతున్నాయి. ఈ నవతరం దుర్భిణులు సాధారణంగా అంబర చుంబితాలయిన భవనాలలో, గుహల వంటి గదులలో, ఉంటాయి. ఇవి యంత్రాలు నడిపే స్వయంచాలితాలైన పరికరాలు. నడపటం అంటే ఏమిటనుకుంటున్నారా? మూడంతస్తుల ఎత్తు ఉన్న వేధశాల టొపారం అర్ధగోళాకారంలో ఉంటుంది కదా. పగలంతా ఈ అర్ధగోళపు తలుపులు మూసే ఉంటాయి. చీకటి పడ్డ తరువాత వాటంతటవే తెరుచుకుంటాయి. రాత్రంతా ఎంతోమంది పరిశోధకులు తమతమ పరిశోధనలకి కావలసిన నక్షత్రాలవైపు దుర్భిణి దృష్టిని సారిస్తారు. ఇదంతా కలనయంత్రాల ఆధ్వర్యంలో మానవ ప్రమేయం లేకుండా జరిగిపోతుంది. పరిశోధకులు వేధశాలలో ఉండనక్కరలేదు. ఎవరి స్వస్థానాలలో వారు ఉండొచ్చు. దుర్భిణి తీసిన చాయాచిత్రాలు అంతర్జాలం ద్వారా పంపిణీ అయిపోతాయి. ఒక రాత్రి జరగవలసిన పని వ్యర్థం అయితే లక్ష అమెరికా డాలర్లు నష్టపోయినట్లే. దుర్భిణి కేంద్రాలలో కాలానికి అంత విలువ!
ఈ రోజు ప్రపంచంలో ఉన్న అతి పెద్ద దుర్భిణులలో పెద్దవి మూడు హవాయి రాష్ట్రంలో (Hawaii) ఉన్నాయి. వాటి పేర్లు ఉత్తర జెమినై (Gemini North), సూబరూ (Subaru), కెక్ (Keck). హవాయి ద్వీపాలలో మౌనా కెయా (Mauna Kea) అనే చల్లారిపోయిన అగ్నిపర్వతం ఒకటుంది. దాని శిఖరం 14,000 అడుగుల ఎత్తున ఉంది. ఇంత ఎత్తు వెళ్ళే సరికి భూమి వాతావరణంలో దరిదాపు సగం దాటి పైకి వెళ్ళినట్లే. ఇలా కొండ మీద వేధశాలలు కట్టటం వల్ల ఒక ప్రయోజనం ఉంది. దూరం నుండి వచ్చే పరారుణ కిరణాలని (infrared rays) మన వాతావరణంలో ఉన్న నీటి కావిరి (water vapor) చాలమట్టుకి పీల్చేసుకుంటుంది. కొండమీదకి వెళితే ఆ కిరణాలు మన పరికరాలకి ‘కనిపిస్తాయి.’ కాని అంత ఎత్తుకి వెళితే అక్కడ గాలి తక్కువ కాబట్టి గాలి పీల్చటం, వదలటం కష్టం. పైపెచ్చు పగలే చలి! రాత్రి ఇంకా చలి! ఈ పరిస్థితులలో బుర్ర పనిచెయ్యదు (మెదడు బాగా పని చెయ్యటానికి ఆమ్లజని కావాలి కదా!) ఇన్ని కష్టాలకి ఓర్చుకుంటే ఫలితం దక్కుతుంది. కష్టే ఫలీ అన్నారు.
ఉత్తర జెమినై దుర్భిణికి ఉన్న 8.1 మీటర్ల దర్పణాలు సేకరించిన కాంతిని విశ్లేషించటానికి దుర్భిణియొక్క నాభి (focus) దగ్గరగా నాలుగు అంక పత్తాసులు (digital detectors), గుండ్రంగా తిరగటానికి వీలైన రాట్నపు చట్రంలో (carousel) బిగించబడి ఉన్నాయి. సమయానుకూలంగా ఈ పత్తాసులలో ఒక దానిని కాంతి మార్గంలోకి వచ్చేటట్లు చట్రాన్ని తిప్పి వాడుకోవచ్చు. ఈ పత్తాసులలో ముఖ్యమైనవి వర్ణమాలామితులు (spectrometers) ఛాయాచిత్రగ్రాహకులు (cameras). ఇవి ఒకొక్కటి 5 మిలియను డాలర్లు ఖరీదు చేస్తాయి. ఏ సమయంలో దుర్బిణిని ఏ నక్షత్రం వైపు సారించాలో, ఆ నక్షత్రం నుండి వచ్చే కాంతిని ఎంతసేపు సేకరించాలో, ఆ కాంతిని ఏ పత్తాసు చేత విశ్లేషించాలో, అలా విశ్లేషించగా వచ్చిన ఫలితాన్ని ఏ పరిశోధకుడికి పంపాలో – ఈ వ్యవహారం అంతా స్వయంచాలకంగా (ఆటోమేటిక్ గా) జరిగిపోయేటట్లు కలనయంత్రాలే చూసుకుంటాయి. అక్కడ ఉండే సిబ్బంది కేవలం నిమిత్తమాత్రులు. పర్యవేక్షణ బాధ్యతలు తప్ప వారికి పెద్ద పనులు ఉండవు.
2. సూబరూ దుర్భిణి.
సూబరూ దుర్భిణి జపాను వారిది. దీని నిర్మాణం, ఉపయోగించే తీరు కొంచెం తేడాగా ఉంటాయి. సూబరూ దుర్భిణితో పనిచెయ్యవలసిన పరికరాలు అన్నీ కూడ ఒక అలమారులో వరసగా అమర్చబడి ఉంటాయి. ఎప్పుడు ఏ పరికరం కావలసి వచ్చినా దానిని ఆ అలమారు నుండి తీసి దుర్భిణిలో అమర్చటనికి ఒక చాకరు (robot) తిరుగుతూ ఉంటుంది. కంప్యూటరు పర్యవేక్షణలో ఆ రోబాటు చెయ్యవలసిన పనులన్నీ చేసుకుపోతుంది. సూబరూ ప్రత్యేకత ఏమిటంటే ఈ దుర్భిణికి ఉన్న కంటి కటకం గుండా మనం కూడ అంతరిక్షపు లోతుల్లోకి చూడవచ్చు. ఉపగ్రహంలా భూమి చుట్టూ తిరుగుతున్న హబుల్ టెలిస్కోపుకి (Hubble telescope) ఏవేవి, ఎంతబాగా కనిపిస్తాయో దరిదాపు అవే దృశ్యాలని సూబరూలో మనం చూడటానికి అవకాశం ఉంది; అడిగినవారందరికీ అనుమతి దొరకపోవచ్చు, అది వేరే విషయం.
3. కెక్ దుర్భిణి ఉండే గృహం.
మిగిలినది కెక్ టెలిస్కోపు. నిజానికి కెక్ వేధశాలలో ఉన్నవి రెండు దుర్భిణులు. రెండింటికి 10 మీటర్ల దర్పణాలు ఉన్నాయి. వీటి ప్రత్యేకత ఏమిటంటే – గుండ్రంగా ఉన్న ఒకొక్క అద్దంలో 36 తొనలు (segments) ఉంటాయి. అంటే అద్దం అంతా గుండ్రంగా, పళ్ళెంలా ఉన్న ఏకాండీ ముక్కతో చేసినది కాదు. ఒకొక్క తొన, దానిని స్వయం ప్రతిపత్తితో నియంత్రించే సరంజామా, అంతా కలుపుకుని 500 కిలోల బరువు ఉంటుంది. ఒకొక్క తొన ఖరీదు మిలియను డాలర్లు ఉంటుంది. ఈ దుర్భిణికి కూడ ‘గొట్టం’ అంటూ ఏదీ లేదు. కట్టడం అంతా సన్నటి ఉక్కు బద్దీలతో నిర్మించబడి చూట్టానికి సాలెగూడులా ఉంటుంది.
ఈ దుర్భిణులు ఉన్న గుయ్యారాలలో అల్లిబిల్లిగా అల్లుకుపోయినట్లు ఉన్న రాటలు, దూలాలు, వాసాల మధ్య ధూళి, దూగర చేరితే పడ్డ కష్టం అంతా వ్యర్థం కదా. ఎక్కడో విశ్వపు అంచుల నుండి (అంటే విశ్వం పుట్టిన కొత్త రోజుల నుండి) బయలు దేరిన కాతి కిరణం నిరాఘాటంగా ఇంతదూరం వచ్చి మన గుమ్మం చేరుకున్న తరువాత దానిని ఒక సాలె గూడులో దారం అడ్డుకుంటే మన అప్రయోజకత్వానికి అంతకంటె తార్కాణం ఏమిటి కావాలి? అందుకని కాంతి చేసిన ఆ మహా ప్రస్థానంలో ఆ చిట్టచివరి అడుగులకి ఏ అడ్డంకి లేకుండా చూసుకుంటే మనం పడ్డ కష్టానికి, వెచ్చించిన డబ్బుకి ఫలితం దక్కుతుంది.
ఈ ఆధునిక యుగంలోని పెద్ద పెద్ద టెలిస్కోపులు ఆకాశపు అంచుల నుండి వస్తూన్న కాంతిని సేకరించటంలోనే కాకుండా, ఇంకా అనేక విధాలుగా మన సాంకేతిక పరిజ్ఞానాన్ని ఉపయోగించి మనకి కనిపించే బొమ్మ స్పుటంగా, కలత లేకుండా కనిపించేటట్లు చేస్తున్నాయి. ఉదాహరణకి, భూమి వాతావరణం వల్ల కలిగే అరిష్టాలు సముద్ర మట్టం నుండి దరిదాపు 10 కిలోమీటర్లు పైకి వెళ్ళేవరకు ఉంటూనే ఉంటాయి. ఈ అరిష్టాలవల్ల బొమ్మ నిలకడగా ఉండక చెదిరిపోతుంది — ఫొటో తీస్తూన్నప్పుడు చెయ్యి కదిలితే బొమ్మ చెదిపోయినట్లు. కాంతి కిరణం ప్రయాణం చేసే దారిలో ఉన్న వాతావరణంలో సమీరితం (turbulence) ఎంతుందో తెలిస్తే అప్పుడు ఆ సమీరితం వల్ల బొమ్మ ఎంతలా కదిలిపోయిందో అంచనా వేసి, దానిని కలత చెందిన బొమ్మలో సవరిస్తే మనకి స్పుటమైన బొమ్మ వస్తుంది. ఈ రకం సవరింపు లెక్కలు చెయ్యటానికి లేసరు కిరణవారం (laser beam) వాడతారు. ఆకాశంలోకి లేసరు కిరణవారాన్ని 56 మైళ్ళు (90 కిలోమీటర్లు) దూరం వెళ్ళే వరకు ప్రసరింప చేస్తారు. ఈ కిరణాలు అక్కడ ఉన్న సోడియం అణువులని ఉత్తేజ పరుస్తాయి. అప్పుడు అవి దీపం వెలిగినట్లు వెలుగుతాయి. ఈ వెలుగుని కృత్రిమ తార (artificial star) అంటారు. ఈ తారని మన దుర్భిణి ద్వారా చూసి, భూమట్టం నుండి 56 మైళ్ళ ఎత్తు వరకు వాతావరణం ఎంత కల్లోలంగా ఉందో లెక్క కడతారు. ఇలా వచ్చిన లెక్కని ‘కలతాంశం’ అందాం. నిజం నక్షత్రాల నుండి వచ్చే కాంతివాకేతాల (light signals) నుండి ఈ కలతాంశాలని తీసివేస్తారు. అంతవరకు మసకగా ఉన్న బొమ్మ అమాంతం స్పుటంగా కనిపిస్తుంది. ఇది పనిచేస్తూన్నప్పుడు కలతాంశ సవరింపుని ‘ఆన్’ చేసి ఒక సారి ‘ఆఫ్’ చేసి చూస్తే కాని ఈ పద్ధతి లోని గొప్పతనం నమ్మ బుద్ధి కాదు. ఈ ప్రక్రియని ఇంగ్లీషులో ఎడాప్టివ్ ఆప్టిక్స్ (adaptive optics, AO) అంటారు. చత్వారం ఉన్న మనిషికి కళ్ళద్దాలు ఎలాంటివో టెలిస్కోపుకి ఈ పద్ధతి అలాంటిది.